# Curriculum Map <br> Year 13 

## Learning Aims and Curriculum Intent:

The aims are to enable students to:

- Understand mathematics and mathematical processes in a way that promotes confidence, fosters enjoyment, and provides a strong foundation for progress to further study
- Apply mathematics in other fields of study and be aware of the relevance of mathematics to the world of work and to situations in society in general
- Use their mathematical knowledge to make logical and reasoned decisions in solving problems both within pure mathematics and in a variety of contexts, and communicate the mathematical rationale for these decisions clearly and recognise incorrect reasoning
- Generalise mathematically, construct mathematical proofs, use skills and techniques to solve challenging problems that require them to decide on the solution strategy
- Represent situations mathematically and understand the relationship between problems in context and mathematical models that may be applied to solve them
- Draw diagrams and sketch graphs to help explore mathematical situations and interpret solutions, make deductions and inferences, and draw conclusions
- Read and comprehend articles concerning applications of mathematics and communicate their understanding

| Term | Content, Key Questions and Knowledge | Skills | Assessment |
| :---: | :---: | :---: | :---: |
|  | Pure Mathematics: <br> What are some algebraic tools to model complex systems or pattern? <br> 1. How to describe patterns using expressions and solve problems (e.g. taxi fare, different loan plans, supply-demand, etc.)? (Recap) <br> - Sequences and series <br> 2. How to solve problems involving geometry and position that include circular? <br> - Radians <br> - Trigonometric functions <br> - Trigonometric identities <br> - Parametric equations <br> Statistics: <br> How to determine if a set of data follow a trend as expected? How to evaluate the probability of multiple events? <br> 1. How to evaluate the trend of a set of data? (e.g. making distinctions between large sets of data, difference in shopping habits between people entering a grocery store or those entering a shoe store, etc.) <br> - Regression, correlation and hypothesis testing <br> 2. How to evaluate probability of multiple events? (e.g. probability of testing positive for a disease after administering a medicine, etc.) <br> - Conditional probability | Conversion between radians and degrees <br> Finding arc lengths, area and perimeter of sectors, and perimeter and area of segments using angles in radian <br> Solving trigonometric equations in radian <br> Applying small angle approximations to find approximated expressions or values <br> Using secant, cosecant and cotangent functions to solve problems <br> Sketching graphs of secant, cosecant and cotangent functions <br> Applying trigonometric identities related to secant, cosecant and cotangent functions <br> Using arccosine, arcsine and arctangent functions to solve problems <br> Applying the angle addition formulae Applying the double-angle formulae <br> Applying the double-angle formulae Solving trigonometric equations using all identities and formulae learnt thus far <br> Simplifying $a \cos x \pm b \sin x$ <br> Proving trigonometric identities <br> Converting parametric equations into Cartesian equations by substitution <br> Converting parametric equations into Cartesian equations using trigonometric <br> identities <br> Sketching graphs for parametric equations <br> Finding points of intersections of parametric equations <br> Using exponential functions to model a linear relationship between two non-linear variables <br> Evaluate the value of PMCC of a set of bivariate data <br> Evaluate the value of PMCC of a set of bivariate data <br> Carry out hypothesis testing for correlation between two variables using the PMCC Producing Venn diagrams <br> Fhding probability using a Venn diagram and set notation <br> Check for independence between two events <br> Find conditional probabilities <br> Producing sample space diagrams | Retrieval quizzes to build knowledge acquisition and understanding. <br> Exam Practice questions <br> In-class retrieval questions |

## Mechanics:

How to solve problems related to motions?

1. What affects the moment of an object about a pivot? (e.g. lever system, kshelf, etc.)

- Moments

2. How does friction affect motions?

- Forces and friction
- Applications of forces

3. How do objects in a projectile behave? (e.g. at what height or velocity to drop an aid crate, the best trajectory for throwing a discus to maximise - Projectiles

| Statistics: <br> How to determine if a set of data follow a trend as expected? How can random <br> samples of populations be used to make predictions about entire the <br> populations? <br> • The normal distribution <br> Mechanics: <br> How to solve problems related to motions? <br> • Further kinematics <br> Exam preparation and practice <br> Exam preparation and practice |
| :--- |

Statistics:
How to determine if a set of data follow a trend as expected? How can random
samples of populations be used to make predictions about entire the
- The
Mechanics:
- Further kinematics
Exam preparation and practice
曾

- Finding conditional probability using a tree diagram Finding resultant moment about a point
Applying the moment formulae to solve equilibrium problems
- Applying the moment formulae to solve tilting problems
- Resolving forces
- Applying the force formulae to solve problems

Applying the force formulae to solve problems involving an inclined plane
Fnding the magnitude of friction between two objects

- Applying the force formulae to solve problems involving friction with or without an

Writing equation for the horizontal motion of a projectile
Writing equation for the vertical motion of a projectil

- Finding the components of a velocity of a projectile
- Using the projectile equations to solve problems Combine the component equations to fistal displacement, horizontal displacement of the projectile motion in terms of ve
of motion
- Describing motion in vector form

Applying kinematics formulae in vector form
Using calculus to solve problems involving variable acceleration as complex functions
Finding probabilities involving normal distributions
Finding critical regions using the inverse normal distributio

- Solve problems using the standardised normal distribution standardised form
Using the normal distribution as an approximation for a binomial distribution Carry out hypothesis testing using a normal distribution

Retrieval quizzes to build knowledge acquisition and understanding

Exam Practice questions
In-class retrieval questions
Exam conditions questions


