

Learning Aims and Curriculum Intent:

The aims are to enable students to:

- Understand mathematics and mathematical processes in a way that promotes confidence, fosters enjoyment, and provides a strong foundation for progress to further study
- Apply mathematics in other fields of study and be aware of the relevance of mathematics to the world of work and to situations in society in general •
- Use their mathematical knowledge to make logical and reasoned decisions in solving problems both within pure mathematics and in a variety of contexts, and communicate the mathematical rationale for ٠ these decisions clearly and recognise incorrect reasoning
- Generalise mathematically, construct mathematical proofs, use skills and techniques to solve challenging problems that require them to decide on the solution strategy •
- Represent situations mathematically and understand the relationship between problems in context and mathematical models that may be applied to solve them ٠
- Draw diagrams and sketch graphs to help explore mathematical situations and interpret solutions, make deductions and inferences, and draw conclusions ٠
- Read and comprehend articles concerning applications of mathematics and communicate their understanding •

Term	Content, Key Questions and Knowledge	Skills	Assessment
Michaelmas	 Pure Mathematics: What are some algebraic tools to model complex systems or pattern? 1. How to describe patterns using expressions and solve problems (e.g. taxi fare, different loan plans, supply-demand, etc.)? (Recap) Sequences and series 2. How to solve problems involving geometry and position that include circular? Radians Trigonometric functions Trigonometric identities Parametric equations 	 Conversion between radians and degrees Finding arc lengths, area and perimeter of sectors, and perimeter and area of segments using angles in radian Solving trigonometric equations in radian Applying small angle approximations to find approximated expressions or values Using secant, cosecant and cotangent functions to solve problems Sketching graphs of secant, cosecant and cotangent functions Applying trigonometric identities related to secant, cosecant and cotangent functions Using arccosine, arcsine and arctangent functions to solve problems Applying the angle addition formulae Applying the double-angle formulae Solving trigonometric equations using all identities and formulae learnt thus far Simplifying <i>a</i> cos <i>x</i> ± <i>b</i> sin <i>x</i> Proving trigonometric identities Converting parametric equations into Cartesian equations by substitution Converting parametric equations into Cartesian equations using trigonometric 	Retrieval quizzes to build knowledge acquisition and understanding. Exam Practice questions In-class retrieval questions
	 Statistics: How to determine if a set of data follow a trend as expected? How to evaluate the probability of multiple events? 1. How to evaluate the trend of a set of data? (e.g. making distinctions between large sets of data, difference in shopping habits between people entering a grocery store or those entering a shoe store, etc.) Regression, correlation and hypothesis testing 2. How to evaluate probability of multiple events? (e.g. probability of testing positive for a disease after administering a medicine, etc.) Conditional probability 	 identities Sketching graphs for parametric equations Finding points of intersections of parametric equations Using exponential functions to model a linear relationship between two non-linear variables Calculate the value of PMCC of a set of bivariate data Evaluate the value of PMCC of a set of bivariate data Carry out hypothesis testing for correlation between two variables using the PMCC Producing Venn diagrams Finding probability using a Venn diagram and set notation Check for independence between two events Find conditional probabilities Producing sample space diagrams Applying probability formulae to solve problems 	

2023 / 2024

	 Mechanics: How to solve problems related to motions? 1. What affects the moment of an object about a pivot? (e.g. lever system, hanging bookshelf, etc.) Moments 2. How does friction affect motions? Forces and friction Applications of forces 3. How do objects in a projectile behave? (e.g. at what height or velocity to drop an aid crate, the best trajectory for throwing a discus to maximise the distance travelled etc.) Projectiles 	 Producing tree diagrams Finding conditional probability using a tree diagram Finding resultant moment about a point Applying the moment formulae to solve equilibrium problems Applying the moment formulae to solve tilting problems Resolving forces Applying the force formulae to solve problems Applying the force formulae to solve problems involving an inclined plane Finding the magnitude of friction between two objects Applying the force formulae to solve problems involving friction with or without an inclined plane Writing equation for the horizontal motion of a projectile Writing equation for the vertical motion of a projectile Finding the components of a velocity of a projectile Using the projectile equations to solve problems Combine the component equations to find an equation of the projectile motion in terms of vertical displacement, horizontal displacement, initial speed and initial ar of motion
Lent	Statistics: How to determine if a set of data follow a trend as expected? How can random samples of populations be used to make predictions about entire the populations? • The normal distribution Mechanics: How to solve problems related to motions? • Further kinematics Exam preparation and practice	 Describing motion in vector form Applying kinematics formulae in vector form Solving projectile problems in vector form Using calculus to solve problems involving variable acceleration as complex functi Finding probabilities involving normal distributions Finding critical regions using the inverse normal distribution Solve problems using the standardised normal distribution Finding the mean and standard deviation of a normal distribution using the standardised form Using the normal distribution as an approximation for a binomial distribution Carry out hypothesis testing using a normal distribution
Trinity	Exam preparation and practice	

What consolidation looks like in this subject	Centralised interleaved homework's, regular CDA's to create a culture of regular low stakes testing to encourage spaced memory retrieval, access to sharepoint; onlin tasks.		
Examples of Homework	Exercises to complete from the textbook (Edexcel), centralised homework worksheets and exam practice questions		
Key terminology	Verify, Show, Solve, Explain, Evaluate, Prove, Analyses, Hence, Limits, Constraints		
Super-curricular enrichment and scholarly extension	Read: Fermat's Last Theorem (Simon Singh), From Calculus to Chaos (David Acheson), Life's Grandeur (Stephen Jay Gould). Watch: https://www.numberphile.com/ Listen: https://podcasts.ox.ac.uk/series/secrets-mathematics Visit: https://www.sciencemuseum.org.uk/see-and-do/mathematics-winton-gallery		
Useful websites	DrFrostMaths.com Physics & Maths Tutor (physicsandmathstutor.com) https://www.savemyexams.co.uk https://login.pearson.com		
Who can I contact?	Head of Department	Aqeel Ashiq, <u>aas@forest.org.uk</u>	
who can't contact:	Teachers	Zamir Nazir, <u>zhnforest.org.uk</u>	

Retrieval quizzes to build knowledge acquisition and understanding.
Exam Practice questions
In-class retrieval questions
Exam conditions questions
Retrieval quizzes to build knowledge acquisition and understanding.
Exam Practice questions
In-class retrieval questions
Exam conditions questions

line resources with the schemes of work and revision

2023 / 2024